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We analyze the density profiles for liquid-vapor interfaces within two density functional(DF) approxima-
tions, applied to simple fluid models which have low ratios between their triple and critical temperatures. The
observation of layering structures at lowT is discussed in relation with the Fisher-Widom line for each model.
Although we find no apparent correlation between the amplitude of the oscillatory density decay mode and the
approach toTFW, that temperature sets a threshold for the generation of nonmonotonic structures within a fixed
distance of the interface. The rapid decay of the oscillatory mode amplitude withT may be interpreted as a
result of the capillary wave(CW) damping of strongly structured intrinsic density profiles. The layering in the
presence of gravitylike external fields indicate that the effective transverse size which might be built in the DF
approximations is around 10±2 molecular diameters; however, that interpretation has to allow for an effec-
tively reduced damping exponent, i.e., an effective surface tension for the CW Hamiltonian which is larger than
the value obtained directly from the DF grand-potential minimization.
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I. INTRODUCTION

Accurate nonlocal density functional(DF) approxima-
tions [1] have been developed, over the last decades, to de-
scribe the strong layering structures in the density profiles of
wall-fluid interfaces. The same DF approximations have
been used to describe liquid-vapor interfaces, generally in
good agreement with the results of the simplest square-
gradient approximation[2], which describes the free liquid
surface as a smooth monotonic density profilerszd. Some
early theoretical predictions[3] of layered structures at the
free surface of the Lennard-Jones(LJ) liquid, near its triple
point temperatureTt, were apparently supported by computer
simulation results[4], but not confirmed by improved theo-
retical treatments, nor by computer simulations with larger
system sizes and equilibration times, so that the presence of
molecular layering at free liquid surfaces was disregarded
during two decades. In the last few years, there has been a
revival of the subject, based on new evidence from experi-
ments[5], theory[6], and computer simulations[7]. The in-
creasing accuracy of the experimental results for the x-ray
reflectivity on liquid surfaces has given clear evidence of
atomic layering for some liquid metals, Hg[8], Ga [9], and
more recently for alkali-metal mixtures[10]. In parallel, a
generic DF analysis[6] has predicted the common exponen-
tial decay modesrszd−ro,exps−zzd towards a bulk density
ro. The decay constantsz are determined by the direct cor-
relation function of the bulk fluid, so that they should be
common to the density profiles of the free liquid surface, to
the interfaces of the same liquid against solid walls, and to
the radial distribution functiongsrd. The complex valueszc

=a± iq represent decaying layered structures, while the real
values zr =b give monotonically decaying density profiles
(we assumea,b.0 with the bulk phase filling thezù0
semispace). The asymptotic behavior ofrszd towards the
bulk phase would be controlled by the slowest decay mode,

i.e., that with the lowest real part forz. The Fisher-Widom
(FW) line, on the(ro, T) plane, was originally defined[11] in
terms of the asymptotic decay ofgsrd in a liquid, and it was
later recognized[6] as the generic boundary between the
liquid states with an asymptotic oscillatory decaysa,bd
and those with a monotonic exponential decaysa.bd. Other
(real or complex) roots with larger real part are not relevant
for the discussion, so that we refer tozc=a± iq andzr =b as
the two roots with the lowest real parts. The imaginary com-
ponentq of the complex rootzc is always found to be around
2p /s, as it corresponds to the formation of molecular layers
in rszd, with period similar to the molecular diameters.

The estimations for LJ and other simple-fluid models[12]
locate most of the liquid coexisting phase on the oscillatory
side of the FW line, which intercepts the liquid-vapor coex-
istence at temperaturesTFW of only about 10% below the
critical temperatureTc. Oscillating tails inrszd were found in
some DF calculations, although their amplitude(which can-
not be predicted from the linear DF analysis) was found to be
very small. In practice, the accurate fit of the density profile
tails often requires adding an oscillatory and a monotonic
decaying mode,

rszd − ro = A e−sa±iqdz + B e−bz + ¯. s1d

The same liquid bulk has very different values forA andB at
the vapor-liquid, at wall-liquid interfaces, or around an iden-
tical test particle used to get the radial distribution function
gsrd=rsrd /ro. Thus, the qualitative aspect of the liquid-vapor
rszd may be very different from that of a wall-fluid interface,
or from gsrd, and only the truly asymptotic behavior would
be common. The strong oscillations ofgsrd, typically ob-
served even atT.TFW, contrast with the empirical evidence
of monotonic decays for the liquid-vapor and liquid-liquid
density profiles in DF approximations unlessT is well below
TFW [6,14]. The logic behind such behavior could be based
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on the difference betweenexternalboundary conditions like
those imposed by a wall-fluid potential energy[or the
equivalent spherical potential imposed by the test-particle
representation ofgsrd], and thefree surfaceof a liquid at the
interface produced by its own molecular interactions. How-
ever, there is no theoretical proof of such conjecture, which
escapes from the linear DF perturbation analysis used to
identify the exponential decayszc=a± iq andzr =b.

The experimental evidence of atomic layering at the free
surfaces of liquid Hg[8] and Ga[9] was first supposed to be
a consequence of the metallic character of these liquids, with
the electrons providing an effective external potential for the
ions. However, an alternative interpretation of that theoreti-
cal evidence was given through the development, and Monte
Carlo (MC) simulations, of simple models with pairwise in-
teractions[7,16,17], devised to have low melting tempera-
tures, with ratiosTt /Tc between the triple and critical tem-
peratures similar to the experimental values of Hg and Ga.
Strong layering structures were observed in the MC density
profiles for these models atT/Tc,0.2, far below the range
of the stable liquid phase of the LJ or other simple fluid
models. Moreover, models representing different mecha-
nisms to get lowTt /Tc ratio may have very different FW
lines but still give similar amplitudes for the oscillatory de-
cay modeAsTd, decaying asT/Tc increases, but without ap-
parent correlation with the value ofTFW for each model. The
first objective of this paper is to explore the connection be-
tween the layering at free liquid surfaces and the FW line,
within DF approximations for the samecold liquid models
explored in MC simulations.

Our second objective is the connection between the cap-
illary wave (CW) theory [2,18] and the liquid-vapor density
profiles given by DF approximations. The CW surface fluc-
tuations are assumed to produce local shifts of anintrinsic
profile, so that the interfacial width of the liquid-vapor den-
sity profile would depend on the sampled transverse areaL2,
through the low-wavelength cutoff in the CW spectrum. The
L dependence ofrsz,Ld is very weak (logarithmic) for
monotonic profiles[19], but for oscillatory profiles it be-
comes powerlike, withAsLd,L−hsTd for the amplitude of the
oscillations[20]. The exponent

hsTd =
kTsa2 + q2d

4pg
<

kTp

gs2 s2d

depends on the temperature, on the modulus of the complex
decay constantzc=a± iq, and on the surface tensiong [15].
The dimensionless functionhsT/Tcd takes very similar val-
ues for different models of the molecular interactions[16],
increasing with the temperature. The typical simple liquids
described by the LJ potential havehsTd.3, while thecold
liquids quoted above reach much lower values, withhsTd
<1 at their triple point.

The size dependence ofrsz,Ld does not fit well in the DF
formalism, which provides results for the density profilerszd
of infinite flat surfaces, as the density distributions which
minimize the grand potential energyV[rszd] =F[rszd] −mN.
This apparent contradiction comes from the approximate

character ofFfrg, which neglects the CW long-ranged sur-
face correlations[22]. Hence, the liquid-vaporrszd from any
DF approximation might be interpreted[23] as anintrinsic
density profile, including the correlations up to an effective
transverse lengthLeff, assumed to be a few molecular diam-
eters. The extremely weakL dependence of monotonic den-
sity profiles makes nearly irrelevant the precise estimation of
Leff, and the DF profilesrszd have often been compared with
simulation results without explicit reference toL. However,
the strong sensitivity of the density layering amplitude toL
offers both a problem, for the direct comparison of DF pro-
files with computer simulations or experimental data, and an
opportunity to use it to estimateLeff. To that effect, we built
on the concept of a strongly oscillatoryintrinsic profile with
layering amplitudesAo similar to the bulk liquid densityro,
and associated to a transverse sampling sizeLo<s. That
concept was strange to the classical view of sharp but mono-
tonic intrinsic profiles, but it was presented first in the analy-
sis of x-ray reflectivity data[5,8,9], and recently checked
with MC simulations of cold liquids[21]. Although the use
of such short sampling area requires an important reformu-
lation of the classical CW theory[21], we take here a naive
view and assume thatAsLd=rosLo/Ldh, with a free parameter
Lo which represents the(extrapolated) sampling length at
which the amplitude of the layering becomes equal to the
bulk density. In the next section, we present the models and
the DF approximations used in this work. In Sec. III, we
analyze the results for the density decay modes towards the
bulk liquid at coexistence with its vapor. In Sec. IV, we get
the density profiles and the surface tension for the free
liquid-vapor interfaces, and in Sec. V, we extend the analysis
to liquid surfaces in the presence of an external gravitylike
field. Finally, a global discussion of all these aspects is pre-
sented as a conclusion.

II. MODELS AND DENSITY FUNCTIONAL
APPROXIMATIONS

We study several pair interaction models which have been
recently developed[7,17] to represent some features of liq-
uids metals with low freezing temperature(Na and Hg). The
pairwise potentials are cast into a common functional form,

fsrd = f0 e−ar − f1o
i=1

n

e−bsr − Rid
2
, s3d

with an exponential repulsive term, controlled by the expo-
nenta and the prefactorf0, andn=1 or 2 Gaussian wells to
represent the attraction, controlled byb, f1, and then values
of Ri.

Reduced units for these interaction models are defined to
mimic those of the LJ system. Thus we define themolecular
diameters such thatfssd=0, as the separation between the
potential well and the repulsive core. The units of energy are
given by the total integral of the potential well in each
model,
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U = −
9

8s3E
s

`

dr r2 fsrd, s4d

with the prefactors chosen to give preciselyU=e for the LJ
model,fLJsrd=4efss / rd12−ss / rd6g.

Despite their common functional form(3), the interaction
potentials obtained with the different sets of parameters in
Table I, and represented in the inset of Fig. 1, have very
distinct characteristics. The Hg model,fHgsrd, has a very
sharp repulsive core, and a broad and flat potential well,
made by the superposition of two Gaussians in Eq.(3). It
was developed from a fit to the structure factor of hot liquid
mercury, and in previous MC simulation studies it was
shown to have a low ratio between the triple point and the
critical temperatures,Tt /Tc<0.27 (to be compared with
Tt /Tc<0.56 for the LJ model), while the FW line crosses the
liquid-vapor coexistence at high temperatureTFW/Tc<0.88
(similar to the LJ result). The main characteristics of the Na
model, fNasrd, obtained from a fit to theoretical results for
the energy of expanded crystals, is its soft repulsive core,

which is enhanced in the SA(soft-alkali) model. These mod-
els have low melting temperatures(Tt /Tc<0.22 for Na and
Tt /Tc<0.10 for SA), but also low FW temperatures
(TFW/Tc<0.68 and TFW/Tc<0.32, respectively), so that
they offer a good set to explore the relevance ofTFW for the
formation of layering structures at their free liquid surfaces.

We have explored these models with DF approximations
based on the separation of the interaction potential,fsrd, as a
core term,frsrd, represented by a hard-sphere fluid; and an
attractive tail, fasrd, treated in the mean-field(MF) approxi-
mation,

Ffrg = FHSfrg +
1

2
E dr E dr 8rsr drsr 8dfasur − r 8ud. s5d

The decomposition offsrd is done with the simplest
method of Baker and Henderson[24], with fasrd=fsrd but
restricted tor ùs, and the reference HS fluid taken to have a
temperature-dependent diameter

dHSsTd =E
0

s

drF1 − expS−
fsrd
kT

DG , s6d

which is very close tos for the hard core of the Hg model,
and well belows for the soft core of the SA model. The
hard-sphere free-energy density functionalFHSfrg is ap-
proximated by two different nonlocal approximations; the
first is a version[25] of the weighted density approximation
(WDA), developed to reproduce the quasiexact Carnahan-
Starling equation of state of the HS fluid. The second is a
more recent[26] version of the fundamental measure theory
(FMT), developed from the concept of dimensional cross-
over [27] and which reproduces the Percus-Yevick equation
of state and direct correlation function,csrd, of the bulk HS
fluid.

Density functional approximations like Eq.(5) have been
extensively used for the study of wall-fluid and fluid-fluid
interfaces, including systems with strong surface layering
[6,14,25,26]. When applied to bulk fluids, they give the ex-
tended van der Waals approximation, with the free energy
per unit volume

fsT,rd = kTrflogsrd − 1 +DcHSsrdg −
16p

9
Us3r2, s7d

whereDcHSsrd is the free energy excess per particle in the
HS fluid, with respect to the ideal gas. The liquid-vapor
phase diagrams from that free energy(shown in Fig. 1) are
very similar for both choices for the HS equation of state,
while the extended van der Waals approximation exaggerates
the difference between the soft-core repulsion of the Na and
SA models, with respect to the harder repulsion of the Hg
model; we include for comparison the results with the LJ
potential. The results for the critical temperatures(Table II)
show deviations, with respect to those obtained by MC simu-
lations[17], which span from a 10% overestimation ofTc for
the SA model to a 10% underestimation for the LJ and the
Hg models. Away from the critical region, the main draw-
back of the DF approximation(5) would appear in the study
of the crystalline solid phases, since neglecting the effects of

TABLE I. Parameters in Eq.(3) for the effective pair potentials
used in this work. Reduced unitss andU are used.

Parameter Hg Na SA

f0/U 1.702331015 2323.69 199.047

f1/U 0.62234 0.97529 1.11604

as 35.3789 7.77647 5.10372

bs2 10.6189 2.59724 2.59677

R1/s 1.00349 1.01415 1.01463

R2/s 1.40132

FIG. 1. The liquid-vapor phase diagram for thefNa, fLJ, fSA,
andfHg model potentials, obtained using the MF-WDA functional
(full line) and the MF-FMT functional(dashed line). Inset shows
the effective pair potentials analyzed in this work: full line,
Lennard-Jones potentialfLJ; dashed line, alkali-like potentialfNa;
dotted line, potential with a softer repulsive part,fSA; and dotted-
dashed line, Hg-like potential,fHg. Reduced unitss and U are
used.
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the correlation structure in the liquid destabilizes this phase
with respect to the crystalline solid, described within the DF
formalism as a strongly self-structured density distribution
[28]. There are several proposals to solve this problem
[29,30] which have been used with good results for the LJ
fluid, but they lead to more cumbersome functional forms.
Therefore, we keep Eq.(5) at the minimum level of com-
plexity to get a qualitatively accurate representation of the
liquid-vapor phase diagram, of the bulk direct correlation
function, and of the liquid surface structure. In all the fol-
lowing, we disregard the solid phase which would be pre-
dicted by our DF approximation, as far as the bulk liquid
becomes locally stable, with respect to the self-modulation of
the density distribution.

III. BULK ASYMPTOTIC DECAY MODES

The generic functional analysis of the decaying density
oscillations[6,13] offers a direct way to calculate the expo-
nential decays, associated to the oscillatory and the monoto-
nous modes in Eq.(1), from the roots of the equations

1 = 4prE
0

`

dr r2csrd
sinhsa rd

a r
cossq rd s8d

and

1 = 4prE
0

`

dr r2csrdcoshsa rd
sinsq rd

q r
, s9d

simultaneously solved for the reala and imaginaryq parts of
the complex decay; and from the solution of Eq.(8), to give
b=a with q=0, for the real exponential decay.

The direct correlation functions,csrd, in Eq. (9) for the
bulk liquids are consistently given within each DF approxi-
mation by the second functional derivative ofFfrg, so that
from Eq. (5) we get

csrd = cHSsrd − bfasrd, s10d

with a density-independent contribution from the attractive
interactionsfasrd, and a HS contribution which is exactly
the result of the Percus-Yevick approximation in the FMT
density functional[26] and includes a small tail inr ùdHS for
the WDA functional[25].

The results fora, q, andb, obtained from thatcsrd and
shown in Fig. 2, have the same qualitative trends as those
from MC simulations[31]. The imaginary partq of the os-
cillatory mode has a weak dependence withT, going from
values just above 2p /s at low temperatures to values around
5/s near the critical point, for all the models. The real part of
the oscillatory mode,asTd, increases withT, while that of
the monotonic mode,bsTd, is always a decreasing function,
vanishing at the critical point, as the inverse correlation
length. The different DF approximations for the HS free en-
ergy have little effect inb, with the WDA results always

TABLE II. The reduced critical temperatureTc/U and the ratio between the critical and the Fisher-Widom
temperaturesTFW/Tc, for the different effective pair potentials. The Monte Carlo(MC) results from Ref.[31]
are compared with the two DF approximations, MF-WDA and MF-FMT, used in this work.

Tc/U TFW/Tc

LJ Hg Na SA LJ Hg Na SA

MC 1.21 1.17 1.25 1.43 0.89 0.88 0.68 0.32

WDA 1.098 1.074 1.349 1.577 0.864 0.871 0.725 0.622

FMT 1.092 1.067 1.340 1.565 0.864 0.871 0.702 0.580

FIG. 2. Exponential decay parameters in mo-
lecular diameter units, obtained from Eqs.(8) and
(9) for the liquid along the coexistence curve,
with the soft-alkali (SA), sodium-like(Na), and
mercury-like(Hg) model interactions. The results
for the two DF approximations are given by the
full lines (MF-WDA) and the broken lines(MF-
FMT). In the upper panels, the decreasing curves
show the real exponential decaysbs and the in-
creasing curves the real part of the exponential
decaysas, with the imaginary partqs in the cor-
responding lower panel. The symbols and the
dotted line(as a guide to the eye) are the results
for as and bs obtained with the Monte Carlo
simulations in Ref.[31].
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slightly below those from the FMT. Compared with the MC
results in terms of the respectiveT/Tc, the DF approxima-
tions overestimateb for the SA model and underestimate it
for the Hg model, with the Na model in between.

In contrast, the DF results fora are always below the MC
data, but now the differences between the two versions for
the nonlocal dependence of the HS free energy are more
important; the most advanced FMT description reduces by
half the difference between the WDA and the MC results for
the SA and the Na models. However, the largest difference
for a is found in the Hg model, and it is less dependent on
the quality ofFHSfrg. This is related to the physical differ-
ences between thecold liquids models; they all share the
property of a low ratioTt /Tc, but they get it from different
effects. The soft core repulsion of the Na model, and its
exaggerated SA version, produces the stabilization of the liq-
uid with respect to the crystal; this effect is incorporated in
the DF approximation by the choice of the effective HS ra-
dius at each temperature(6), and the relatively good agree-
ment between the FMT and the MC results for the Na model
indicate that this procedure is fairly efficient. The extreme
softness of the SA model makes Eq.(6) less accurate, but
still there is an important improvement when we shift from
the WDA to the FMT treatment of the HS nonlocal density
dependence. On the other side, the Hg model has a very
sharp core, which should be well represented byFHSfrg, but
it gets its low triple point from the strong correlations in the
dense liquid, to optimize the occupation of its flat and broad
potential well. Such a difference between the correlation
structure in the liquid and that of the reference HS fluid is
fully missed by our MF approximation(5). The qualitative
consequence of that failure is the rapid decrease of the DF
results fora which decreasingT, so that atT/Tc<0.6 in the
WDA, and 0.52 in the FMT, we geta=0, and the liquid
becomes unstable with respect to a structured(solid) phase.

The FW temperatures, given in Table II, are defined as
those whereasTFWd=bsTFWd, and give the boundary be-
tween the monotonous and oscillatory modes as the slower
decaying perturbation of the bulk liquid. For the Hg model,
the values ofTFW with both DF approximations are very
close to those obtained with MC simulations[31], but that
hides relatively large shifts in the values ofasTd and bsTd.
For the SA model, we get the largest overestimation in the
DF value forTFW/Tc, with respect to the MC results, while
the good agreement for the Na model reflects that its corre-
lation structure is reasonably described by the HS reference
system, without the problems created by the extra-soft core
of the SA, or by the non-HS correlations of the Hg model.

IV. LAYERING AT FREE LIQUID SURFACES

The amplitudesA andB for the decaying modes in Eq.(1)
are more important than the exponential decaysa and b to
determine the aspect of the density profiles near the interface.
Since those amplitudes cannot be obtained from the linear
DF analysis, we have to shift to a numerical minimization of
the grand-potential energyVfrg=Ffrg+medrrsr d with re-
spect to planar profiles,rsr d=rszd, with the boundary values
rl andrv, away from the interface. We have used a standard

conjugated-gradients method to minimize the surface tension
g=sVfrg−Vbulkd /A, and to get the equilibrium values and
density profile. Therefore, using the values ofg together with
a andq from Eqs.(8) and(9), at each temperature and model
interaction we may obtain the DF results for the exponent
hsT/Tcd defined in Eq.(2), which are presented in Fig. 3, and
compared with the Monte Carlo results for the same models
[17]. That comparison shows a fair agreement between the
DF and MC results forh, when represented in terms of the
critically scaled temperaturesT/Tc; also the results for the
different model interactions fall into an approximately com-
mon shape, i.e., roughly following alaw of corresponding
states. The rapid increase ofh with T/Tc is a consequence of
the decrease ofg as we approach the liquid-vapor critical
point; therefore the critical divergence ofh at T=Tc should
certainly have a different shape from the MC simulations and
from the mean-field DF calculations, but those bulk critical
differences do not show up in the temperature rangesT
ø0.7 Tcd explored here.

The insets in Fig. 4 present typical density profiles, com-
paring the results of the two versions forFHSfrg, and the
dependence with the temperature(tied to the change in the
coexisting bulk densities), while the broad views of the in-
terfaces are shown in detail in the main figures. The oscilla-
tions observed for the density profiles at low temperatures
are qualitatively similar to those observed for the SA and Hg
models in MC simulations[7,16] and also to those obtained
for a square-well potential in previous studies with a similar
DF approximation[6]. The main difference between the re-
sults appears when the WDA is used to describe the HS core
in the Hg model, since a vanishingasTd produces the propa-
gation of the oscillatory structures very deep into the liquid
bulk [notice the extendedz scale in Fig. 4(c)]. Otherwise, the

FIG. 3. The capillary wave exponenth for the free liquid sur-
face obtained from Monte Carlo simulations(left panel) using
hsTd=kTp /gs2, and from the MF-FMT approximation(right
panel) using hsTd=kTsa2+q2d /4pg. Circles:sodium-like(Na) po-
tential fNa; triangles: potential with a softer repulsive part,fSA;
squares:mercury-like(Hg) potential,fHg; and rhombus: Lennard-
Jones potentialfLJ. The shadowed band in the right panel gives the
estimation for the effectiveh obtained from the values ofLh given
by Eq. (16), and assuming thatL=12±1s for all the temperatures
and models.
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results are qualitatively similar for all the models and DF
approximations, with surface layering becoming weaker asT
increases. The numerical accuracy of the DF results allows
the observation of density oscillations with tiny amplitudes,
which would be well below the intrinsic noise of any com-
puter simulation, and the fits of the decaying tails to the
generic form(1) give the values of the complex and real
exponential decays,a, q, andb, together with the respective
amplitudesA andB, all as functions ofT along the coexist-
ing liquid densities for each model. The values have some
dependence on the range ofz used for the fits, since very
close to the interface there are other(faster decaying) terms
which would contribute torszd−rl, while too far from the
interface the amplitudes are too small, even compared with
the small numerical noise from the minimization ofVfrg.
Nevertheless, there is a generally good agreement between
the values ofa, q, andb obtained from the fits torszd and
those predicted by the linear DF analysis and those values
obtained from the fit torszd.

A. The layering amplitude and the Fisher-Widom line

The amplitudes of the two decaying modes ofrszd to-
wardsrl obtained from the fits(1) give uBu ,rl and much
lower valuesA, which we may identify down to 10−3rl, with
the main uncertainty coming from the range ofz used in the
fits. The results forA are presented in Fig. 5 in reducedT/Tc
scale of temperatures. The differences between the two DF
approximations for each model are not important, within the
logarithmic scale used forA, so that we keep the discussion
in terms of the FMT results. The differences between the
models follow the expected trend: the hard core of the Hg
model produces stronger density oscillations at a givenT/Tc
than the ultrasoft core of the SA model; however, the spuri-
ous instability, produced by the MF approximation in our DF
results, restricts the temperature range for the Hg liquid to
T/Tc.0.53, and the observed values ofA are a factor 10
below those for the SA and Na models at low temperatures.
Thus the results for the different models appear to be shifted
along theT/Tc axis, and to show a slightly faster than expo-
nential decay ofA with T. The vertical arrows in Fig. 5 mark
the values ofTFW/Tc for each model and DF approximation.

Although the relative shift of logsAd along theT/Tc axis for
the three models follows the same order asTFW/Tc, it is
clearly much smaller, so that a scaling dependence ofA with
sTFW−Td /Tc should be discarded. For the SA model, we are
able to measure the value ofAsTd up toTFW, while for the Na
and Hg models the amplitude goes below the numerical pre-
cision limit for T still away from TFW. This is qualitatively
similar to the results observed in the MC simulations of the
model, although the exactTFW/Tc is much lower than the
present mean-field result, and the intrinsic noise of the MC
simulation is much higher than numerical precision of our
DF treatment. The lack of correlation betweenAsTd andTFW

for different models was presented as evidence against the
link between these two aspects. However, it is still true that
we are not able to measureAsTd far aboveTFW, and only for
the SA model may we be able to marginally cross that limit.
In contrast, thegsrd of the SA liquid shows clear oscillations,

FIG. 4. Liquid-vapor density
profiles in reduced units,z/s and
rs3, obtained for the three model
potentials(SA, Na, and Hg) with
the MF-WDA (full line) and the
MF-FMT (dashed line) density
functional approximations. The
different curves, with decreasing
bulk densities, correspond to in-
creasing temperatures:T/U=0.50,
0.55, 0.60, 0.65, 0.70 for thefSA

and fNa models; andT/U=0.65,
0.70, 0.75 for thefHg model. The
insets show broad views of the
profiles for the upper and lower
temperatures in each model.

FIG. 5. Amplitude of the oscillatory profiles for the two DF
approximations, in reduced unitsAs3, as defined in Eq.(1) versus
the temperature reduced to the critical one,T/Tc, for thefNa, fSA,
andfHg model potentials, using the MF-WDA(full lines) and MF-
FMT (dashed lines) DF approximations. The error bars indicate the
uncertainty coming from the range ofz used in the fits. The vertical
arrows(full line upward MF-WDA, and dashed line downward MF-
FMT) mark the values ofTFW/Tc for each model and DF
approximation.
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leading to easily measurable values ofAsTd, even at tempera-
tures well aboveTFW, when the asymptotic decay is mono-
tonic.

An explanation for this behavior may be searched for in
terms of the qualitative aspect ofrszd created by the super-
position of the oscillating and the monotonic modes in Eq.
(1). At any T,TFW [i.e., bsTd.asTd], there would be an
oscillatory tail, but if the amplitudeAsTd for that term is
much smaller than the amplitudeB for the (faster decaying)
monotonic mode, the density profile would become oscilla-
tory only for z above alower threshold

zmin
soscdsTd ;

1

b − a
logF B b

AÎq2 + a2G , s11d

which diverges asT approachesTFW from below, as shown
in the left sketch of Fig. 6. The fit of the numerical density
profiles to the form(1) is in practice restricted to the first 10
or 15 layers, so that nearTFW the full range ofz would be
below zmin

soscd and the qualitative aspect of the liquid-vapor
profile would be monotonic. In contrast, for the density pro-
files of the liquid against a wall, or for thegsrd of the liquid,
we expectA.B, so that the logarithm in Eq.(11) would be
negative and the oscillations would be clear from the first
layer at anyT,TFW, while aboveTFW there would still be
clear oscillations forz (or r) below anupper threshold

zmax
soscdsTd ;

1

a − b
logFAÎq2 + a2

B b
G , s12d

which diverges asT approachesTFW from above, as in the
right sketch of Fig. 6. The qualitatively different aspects of
the liquid-vapor density profilesrszd and the pair distribu-
tions functionsgsrd result from the different values of the
term in brackets in Eqs.(11) and(12), with B@A in rszd and
with B!A in gsrd, shifting the role of the FW line from Eq.
(11) to Eq.(12). Any upper cutoff onz forced by the numeri-
cal DF minimization ofVfrg would reduce the observation
of oscillations in the liquid-vapor density profile to tempera-
tures belowTFW. Therefore, the relevance of the FW line
with respect to the aspect of the density profile, at micro-
scopic distances of the free liquid surface, is not based on the
vanishing ofAsTd, but only in having that amplitude of the

oscillatory decay mode, much smaller than the amplitudeB
,rl, for the monotonic decay mode in the liquid surface.
Systems like those described by the Hg of the Na model
interactions have vanishingly small values forAsTd well be-
low TFW, so that the FW line appears to be irrelevant for the
aspect ofrszd. Only because of its lowTFW does the SA
model show the role of the FW in the aspect ofrszd, leading
to monotonous density profiles within the range ofz acces-
sible to our numerical DF calculations, but without a direct
effect ofTFW on the small amplitude of the oscillatory mode.

B. Capillary waves and the effective DF sampling size

We shift now to analyze the rapid decay ofAsTd with
increasing temperatures, within the interpretation ofrszd as
an intrinsic profile associated to the sampling of the surface
over an effective finite transverse areaLeff

2 , and hence with a
limited role of the capillary waves imposed by the lower
wave-vector cutoffql =2p /Leff. The direct characterization
of the intrinsic surfaces and intrinsic density profiles in
Monte Carlo simulations[21] has confirmed the notion, set
up in the interpretation of x-ray reflectivity experiments[8],
that the intrinsic profiles associated to transverse samplings
of Lo<s have strong oscillatory structures, with amplitudes
Ao similar to the liquid bulk densityrl. Within the assump-
tions of the CWT[15], the amplitude of the oscillations,
sampled over a transverse linear sizeL, goes proportional to
L−hsTd, with the exponent defined in Eq.(2). In order to fix
the proportionality constant in that relation, we may arbi-
trarily choose an amplitudeAo equal to the bulk liquid den-
sity rl, and useAsTd=Ao sLo/LeffdhsTd in terms of the effec-
tive transverse sizeLeff which is built in a DF approximation,
and an intrinsic length scaleLo, which may depend on the
model interaction but is expected to have values arounds.
Qualitatively, the value ofLo would correspond to transverse
sampling sizes so short that there is no room for the CW
damping of the oscillatory structure associated to bulk corre-
lation structure in the liquid, with layering amplitude of the
same order of the bulk density.

In Fig. 7, we compare the results forAsTd obtained with
the FMT-DF, and the functionsrlsTd sLo/LdhsTd, for different
values ofL /Lo, using the values ofrl and h given by the
same DF approximation. There is a semiquantitative agree-
ment, in the sense that the fast decay ofAsTd over a narrow
range ofT/Tc is indeed compatible with the CW damping of
the density oscillations. However, the decay ofAsTd not be-
ing as rapid as that ofrlsTdsLo/LdhsTd for a fixed L /Lo, so
that the most naive assumptionLo<s for all the models,
would imply the decay ofLeff with the temperature. For the
SA model,Leff /Lo falls from 14 to 8, for the Na model from
approximately 12 to 7, and for the Hg model from 5 to 3.
Such variations with temperature should be compared with
the bulk correlations lengthsb−1 and a−1, the first one in-
creasing withT while (below TFW) the second one is larger
and decreases withT. Their typical values areb−1 from 0.6
to 0.8s, anda−1 from 1.8 to 1.25s in the SA model, over the
same range ofT/Tc as used to getAsTd; while for the Hg
model b−1 goes from approximately 0.67 to 1.0s, and a−1

decreases from 3.5 to 1.5s. Notice that, if we take the naive

FIG. 6. Sketch of the behavior of thez thresholds that separate
the oscillatory from the monotonic part of the profiles. The left
figure shows the behavior forA!B (as for the liquid-vapor density
profiles), and the right figure forA.B [as for a liquid against a wall
or thegsrd of the liquid].
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assumptionLo<s, the tendency withT/Tc within a model
would suggest the correlation betweenLeff and a−1, but the
comparison between the models goes against such correla-
tion, and the large difference between the predicted values of
Leff for the SA and the Hg models does not correspond to any
equivalent change in the properties of their bulk liquids. A
more educated guess forLo should take into account that the
sharper core repulsion of the Hg model should produce
stronger oscillations, so that the sampling sizeLo to get (or
extrapolated to) A=rl should be much larger than for the
soft-core repulsion of the SA model. That interpretation
might account for the differences between the values of
Leff /Lo for the different models, but it would leave us short
of information to get a quantitative estimate ofLeff from
AsTd, since we cannot discern the value ofLeff without ac-
cepting its strong dependence withT, and then it would be
impossible to separate it from the scaleLo used to transform
the proportionalityA,L−h into a quantitative relationship.

V. LIQUID SURFACES IN EXTERNAL FIELDS

In this section, we explore the effect of a gravitylike field
to add a new control variable to identify the effective length
Leff. In the presence a uniform external field,mg, acting on
the particles of the fluid along thez direction, the CW damp-
ing of the density oscillations goes like

AsT,mgd
Ao

< FSLo

L
D2

+
srl − rvdmg

s2pd2g
Gh/2

, s13d

and it becomes independent ofL when this transverse size
goes well below the capillary length jcap=fsrl

−rvdmg/gg−1/2.
The typical effect of the Earth gravity field on a liquid

surface(with jcap in the range of millimeters) would be fully
irrelevant for any system withL in the range of a few mo-
lecular diameters. Thus to get an appreciable effect ofg on
the density profiles from our DF treatment, we should in-
clude much stronger external fields, which would have a
non-negligible effect on the density of the liquid bulk, creat-
ing a continuous variation ofrszd, instead of a flat
asymptotic profile. In order to reduce this effect, we have
used the external potential

Vextszd = − mgl tanhS z

l
D , s14d

to be nearly linear foruzu ,l;18.33s, and to go nearly flat
at the extreme of our functional minimization box, which we
take atz=180s. Vextszd provides a nearly uniform forcemg
acting on the molecules in the interfacial region, but
smoothly vanishing in the two bulk phases, to avoid the spu-
rious interference with any oscillatory structure created at the
borders of our variational space. The density profiles in Fig.
8 show that a gravity fieldbmgs=0.01(about 1012 times the
Earth gravity) produces very little changes in the aspect of
rszd around the interface. Increasing the field by one order of
magnitude produces some changes in the oscillatory struc-
ture of rszd, but superimposed on a continuous increase of
the liquid density, which has to be extracted before using a fit
similar to Eq.(1). This is done by means of the local density
profile rLDszd, which solves the equation

FIG. 7. Amplitude of the oscillatory profiles
for the FMT-PY approximation, in reduced units
As3, versus the temperature reduced to the criti-
cal one, T/Tc, for the fSA (left panel), fNa

(middle panel), andfHg (right panel) model po-
tentials. The circles and full lines show the same
values(but without error bars) as shown in Fig. 5
from the fits to Eq.(1). The thin lines are the
functionsrlsTdsLo/LdhsTd, for different values of
L /Lo, with hsTd=kTsa2+q2d /4pg. The broad
dashed line is the same function but nowh is
obtained from the estimation for the effective
value ofLh given by Eq.(16) with L=12s.

FIG. 8. Liquid-vapor density profiles in the presence of a gravity
field in reduced units,z/s andr* =rs3 obtained for thefNa inter-
action with the MF-FMT density functional approximation. The
continuous lines are for an external field ofbmgs=0.01; the dashed
line: 0.1; and the dotted lines: 0.4; the left panel corresponds to
T/Tc=0.410 and the right one toT/Tc=0.485. The insets show
rszd−rLDszd, to be used in the fits for the layering amplitude.
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mosTd = m(T,rLDszd) + Vextszd,

where msT,rd;]fsT,rd /]r is the chemical potential as a
function of the density, from the bulk free energy(7), and
mosTd is the chemical potential at liquid-vapor coexistence.
The insets in Fig. 8 present the differencerszd−rLDszd,
which may now be fitted to the form(1) to extract the am-
plitude AsT,mgd for the surface layering.

In Fig. 9, we present the layering amplitude for the Na
model, at several temperatures, as a function ofbmgs. Re-
stringing ourselves to a small range of external fields, strong
enough to make a difference betweenAsL ,mgd andAsL ,0d,
but weak enough to make valid the LDA representation of
the monotonic increase inrszd, we may only discern the
linear term in a Taylor expansion of Eq.(13),

AsT,mgd
Ao

< SLo

L
DhF1 +

srl − rvdmgL2h2

2psq2 + a2d
+ ¯G , s15d

at first order inmg, and where we have used Eq.(2) to
express the surface tension in terms ofh.

The relative increase ofAsT,mgd with mg, from the zero
field valueAsT,0d, gives a direct estimation for the effective
value ofLh,

ULhueff = F2psq2 + a2dkT
AsT,gd − AsT,0d

mgAsT,0d G1/2

. s16d

This expression is independent ofAo andLo, and our results
in Fig. 10, for the effective value ofLh, follow quite well a
law of corresponding statessimilar to that observed for
hsT/Tcd in Fig. 3.

The most direct way to get the effective sampling sizeLeff
would be from the ratio between Eqs.(16) and (2). The re-
sults, in the Fig. 10 inset, are independent of the unknown
value of Lo at which the amplitude is assumed to go toA
=rl, and which should depend on the atomic interaction
model. Now, we may use theseLeff, together with the ampli-
tudesA in Fig. 7 and the exponenth in Fig. 3, to estimate
Lo=LeffsA/rld1/h<0.8s for the SA, Lo<1.05s for the SA,
andLo<2s for the Hg model, which correlate well with the
sharpness of their core repulsions. Nevertheless, those results

for Leff still show a rapid decay with the temperature, which,
away from the narrow range of temperatures in which we are
able to keep track of the density oscillations, would extrapo-
late to unrealistically low values ofLeff at high T. Also, it
seems strange that, within this interpretation, the fairly accu-
rate law of corresponding states observed forLh from Eq.
(16) would come from a cancellation between the stronger
model dependences ofh andLeff. An alternative view is that
we may have an approximately constant and common value,
Leff /s<10±2 for all the models, which would lead to a fair
agreement between the results of Eqs.(2) and (16) at low
temperature, but which would imply(as shown in Fig. 3) an
important reduction in the effective values ofh which de-
scribes the effects of the CW damping at the higherT. Such
internal inconsistency is typical of DF approximations,
which give different results for the correlations evaluated as
a direct response to an externally imposed density change
[like in the test particle route to getgsrd], and when they are
evaluated through the internal DF relationships for the un-
perturbed system[i.e., like the Orstein-Zernike approach to
gsrd from csrd]. In our case, the free-energy cost of an exter-
nally imposed CW-like modulation of the surface may be
well estimated by the DF approximations, as reflected in the
good values obtained forhsT/Tcd; however, the role of such
long-ranged surface correlations is not built in the same DF
approximations, so that they underestimate their effects in
the damping of the layering structures, and hence the value
of hsT/Tcd estimated from Eq.(16). With the estimate of a
constantLeff<12s and the values ofhsT/Tcd obtained from
Eq. (16), the results in Figs. 5 and 7 would be compatible
with values ofLo slightly shorter than those quoted above,
but still in qualitative agreement with the expected differ-
ences created by the sharp core of the Hg model versus the
soft and ultrasoft repulsions of the Na and the SA models.

VI. CONCLUSIONS

We have analyzed in detail the layering structures pre-
dicted by DF approximations applied to the liquid-vapor in-

FIG. 9. Amplitude of the FMT-PY oscillatory profiles for the
fNa model potential at several temperatures, as a function of gravity
field bmgs. The lines are the linear fits corresponding to Eq.(15). FIG. 10. The effective value ofhLeff for the three model poten-

tials: SA (triangles), Na (circles), and Hg(squares), obtained from
Eq. (16) with the MF-FMT density functional. The inset shows the
inferred values of the effective DF sampling lengthLeff, from the
ratio betweenhLeff and the values ofh obtained from the surface
tension in Eq.(2). The lines are guides to the eyes.
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terfaces of fluids with low triple-point temperature, which
were developed and used to confirm the existence of such
oscillations in MC simulations[7,17]. The DF results for the
phase diagrams, the exponential decays of the density pertur-
bations, the FW temperature at coexistence, and the ampli-
tude of the layering structures are in qualitative agreement
with our previous MC simulation results for the same model
interactions, although there are important quantitative differ-
ences, as expected from the simplified DF treatment of the
strong correlations in suchcold liquids.

The high precision of the DF minimization allows us to
extract the amplitudesA and B for the oscillatory and the
monotonic density decay modes much more accurately than
the limit imposed by the intrinsic noise in MC simulations.
Altogether, the DF results forAsTd support the same conclu-
sions as those from MC simulations; the amplitudeAsTd de-
cays rapidly with increasing temperature, but without visible
correlation with TFW−T terms of the FW temperature for
each model. Nevertheless, we give a generic argument
(sketched in Fig. 6) for the absence of oscillations when the
system approachesTFW with a nonvanishing but small-
amplitudeAsTd. The apparently different aspect of the liquid
vapor density profiles and those for the liquid against a hard
wall or the bulk liquid gsrd at temperatures aroundTFW
would be explained by the relative amplitudes of the mono-
tonic and the oscillatory modes for the density perturbations,
which shift the relevance of the FW line from Eq.(11) to Eq.
(12). Hence we may conclude thatTFW is not of relevance
for the temperature dependence ofAsTd, but it still sets the
threshold for the relevance of a small amplitude on theas-
pectof the density profilesrszd.

The alternative explanation for the rapid decay ofA with
T was based on the role of the capillary waves to smooth
down the strong oscillations in theintrinsic density profiles,
associated to samplings of the liquid surfaces over very small
transverse sizes, comparable to the molecular diameters.
This concept, which was first presented in the analysis of
experimental x-ray reflectivity results[8,9], has been ex-
plored in detail with MC simulations for the same models
used here[21]. The prediction within the framework of the
CWT is that the amplitude of the density oscillations is ex-
ponentially sensitive to the lower cutoff on the CW wave
vectors, imposed by the transverse linear sizeL [15]. Hence,
the density profiles of free liquid surfaces, in the absence of
any external potential, should be considered asrsz,Ld, i.e.,
with a direct dependence onL, which does not fit into the DF
scheme ofrszd obtained from the minimization ofVfrg for a
flat infinite surface. The interpretation[22,23] that the DF
profiles should be considered asintrinsic profiles associated
to an effectiveLeff set by the lack of long-range surface cor-
relations in the approximations forFfrg leads to the question
of how to calibrate that effective transverse size. The strong
sensibility ofAsTd to the value ofL, compared with the weak
(logarithmic) dependence of the interfacial width for mono-
tonic profiles, opens the way to a quantitative estimation of
Leff from our DF profiles. The good accuracy of our DF
estimations for the exponenth in Eq. (2), compared with the
MC results in terms ofT reduced to the corresponding criti-
cal values, gives support to the attempt to get such estima-
tions of Leff.

However, the direct comparison ofAsTd with
AosL /Lod−hsTd, in terms of an arbitrary intrinsic amplitude
(which we take asrl) which would be observed for(or ex-
trapolated to) a sampling sizeLo<s, implies a strong depen-
dence ofLeff /Lo with the temperature and with the model
interaction, which is difficult to accept. We searched for the
complementary information given by the dependence of the
amplitudeA on the strength of a gravitylike external field,
which competes withL to set the low-wavelength cutoff for
the CW damping effects. Within the constrains of external
fields strong enough to have a relevant effect, but weak
enough not to break down the linear DF analysis leading to
Eq. (1), we are able to get an estimate for the effective value
of Lh, which fortunately does not depend on the values ofAo
or Lo. The results for the effective values ofhL in different
models fall nicely within a law of corresponding states, with
a common shape when represented in terms ofT/Tc, which,
together with the equivalent law observed for the direct es-
timation of h, goes against the strong model dependence of
Leff suggested by the analysis ofAsT/Tcd at zero field. The
direct results forLeff obtained from the ratio between the
value ofLs extracted from the layering amplitude in external
fields, and the direct result forh (2) from the DF results for
the surface tension and the exponential decays, lead to values
of Leff between 8 and 10s for the three models, but still with
a too rapid decay withT. An alternative explanation may be
given in terms of a slightly larger value ofLeff=12±2s, ap-
proximately constants withT and common to all the model
interactions, but interpreting that the CW damping observed
in the DF results depends on an effective exponentheff,
rather than its value(2), calculated consistently within the
DF approximation. The values ofheff within the broadband
shown in Fig. 3 are close to those from Eq.(2) at low T, but
they fail to follow their rapid increase associated to the de-
caying values of the surface tension with increasing tempera-
tures and the consequent enhancement of the CW fluctua-
tions. Such inconsistency between the values ofh extracted
from the DF results and those which are assumed to be built
into the correlation structure of the free-energy density func-
tional are typical of any mean-field approximation.

Altogether, we may conclude that the interpretation of the
DF profiles for liquid surfacesas intrinsicprofiles associated
to a finite transverse sampling of the interface is consistent
with values ofLeff<10±2s, curiously close to the typical
transverse size of the computer simulation boxes which pro-
vide the most usual test of the DF results. However, to make
that estimate roughly independent of the temperature and the
model interaction, we have to accept also an effective expo-
nentheff, or equivalently an effective surface tension to rep-
resent the(reduced) effects of the CW fluctuations included
in the DF approximation up to that transverse sampling size.
Therefore, the Gaussian convolution of the profilerszd given
by a DF approximation, to include the wavelengths 2p /L
øq,2p /Leff as predicted by the CWT, could only be taken
as a semiquantitative prediction for theL dependence of the
actual density profilersz,Ld sampled over a large transverse
area, like in an x-ray reflectometry experiment. The differ-
ence between the direct value ofh, from Eq. (2), and its
effective valueheff grows withT/Tc, so that in the tempera-
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ture range for typical simple fluids,TùTt<0.6Tc, there
would be a very important difference between the actual role
of the CW fluctuations in systems with transverse lengths
L<10s and those built in a DF approximation with similar
values ofLeff. That discrepancy should be reduced at the low
temperatures accessible to thecold liquid models explored
here, but then we have to be aware of the strong correlations
in these systems, which are left out of the usual DF approxi-

mations, and which may frustrate the quantitative accuracy
of the results.
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